Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
2.
Emerg Microbes Infect ; 10(1): 1227-1240, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1246665

RESUMEN

The ongoing pandemic of COVID-19, caused by SARS-CoV-2, has severely impacted the global public health and socio-economic stability, calling for effective vaccines and therapeutics. In this study, we continued our efforts to develop more efficient SARS-CoV-2 fusion inhibitors and achieved significant findings. First, we found that the membrane-proximal external region (MPER) sequence of SARS-CoV-2 spike fusion protein plays a critical role in viral infectivity and can serve as an ideal template for design of fusion-inhibitory peptides. Second, a panel of novel lipopeptides was generated with greatly improved activity in inhibiting SARS-CoV-2 fusion and infection. Third, we showed that the new inhibitors maintained the potent inhibitory activity against emerging SARS-CoV-2 variants, including those with the major mutations of the B.1.1.7 and B.1.351 strains circulating in the United Kingdom and South Africa, respectively. Fourth, the new inhibitors also cross-inhibited other human CoVs, including SARS-CoV, MERS-CoV, HCoV-229E, and HCoV-NL63. Fifth, the structural properties of the new inhibitors were characterized by circular dichroism (CD) spectroscopy and crystallographic approach, which revealed the mechanisms underlying the high binding and inhibition. Combined, our studies provide important information for understanding the mechanism of SARS-CoV-2 fusion and a framework for the development of peptide therapeutics for the treatment of SARS-CoV-2 and other CoVs.


Asunto(s)
Diseño de Fármacos , Lipopéptidos/síntesis química , Lipopéptidos/farmacología , SARS-CoV-2/efectos de los fármacos , Acoplamiento Viral/efectos de los fármacos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Fusión Celular , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Enfermedades Transmisibles Emergentes/virología , Células HEK293 , Humanos , Mutagénesis Sitio-Dirigida , Conformación Proteica , Células Vero
3.
Emerg Microbes Infect ; 10(1): 810-821, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1180458

RESUMEN

EK1 peptide is a membrane fusion inhibitor with broad-spectrum activity against human coronaviruses (CoVs). In the outbreak of COVID-19, we generated a lipopeptide EK1V1 by modifying EK1 with cholesterol, which exhibited significantly improved antiviral activity. In this study, we surprisingly found that EK1V1 also displayed potent cross-inhibitory activities against divergent HIV-1, HIV-2, and simian immunodeficiency virus (SIV) isolates. Consistently, the recently reported EK1 derivative EK1C4 and SARS-CoV-2 derived fusion inhibitor lipopeptides (IPB02 ∼ IPB09) also inhibited HIV-1 Env-mediated cell-cell fusion and infection efficiently. In the inhibition of a panel of HIV-1 mutants resistant to HIV-1 fusion inhibitors, EK1V1 and IPB02-based inhibitors exhibited significantly decreased or increased activities, suggesting the heptad repeat-1 region (HR1) of HIV-1 gp41 being their target. Furthermore, the sequence alignment and molecular docking analyses verified the target site and revealed the mechanism underlying the resistance. Combined, we conclude that this serendipitous discovery provides a proof-of-concept for a common mechanism of viral fusion and critical information for the development of broad-spectrum antivirals.


Asunto(s)
Antivirales/farmacología , Coronavirus/efectos de los fármacos , VIH-1/efectos de los fármacos , VIH-2/efectos de los fármacos , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antivirales/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Inhibidores de Fusión de VIH/aislamiento & purificación , Inhibidores de Fusión de VIH/farmacología , Humanos , Lipopéptidos/aislamiento & purificación , Lipopéptidos/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/farmacología , SARS-CoV-2/efectos de los fármacos , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
4.
Sci Adv ; 6(45)2020 11.
Artículo en Inglés | MEDLINE | ID: covidwho-842149

RESUMEN

The current coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus genetically close to SARS-CoV. To investigate the effects of previous SARS-CoV infection on the ability to recognize and neutralize SARS-CoV-2, we analyzed 20 convalescent serum samples collected from individuals infected with SARS-CoV during the 2003 SARS outbreak. All patient sera reacted strongly with the S1 subunit and receptor binding domain (RBD) of SARS-CoV; cross-reacted with the S ectodomain, S1, RBD, and S2 proteins of SARS-CoV-2; and neutralized both SARS-CoV and SARS-CoV-2 S protein-driven infections. Analysis of antisera from mice and rabbits immunized with a full-length S and RBD immunogens of SARS-CoV verified cross-reactive neutralization against SARS-CoV-2. A SARS-CoV-derived RBD from palm civets elicited more potent cross-neutralizing responses in immunized animals than the RBD from a human SARS-CoV strain, informing strategies for development of universal vaccines against emerging coronaviruses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Inmunización/métodos , SARS-CoV-2/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Reacciones Cruzadas , Estudios de Seguimiento , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Pruebas de Neutralización , Conejos , Síndrome Respiratorio Agudo Grave/sangre , Síndrome Respiratorio Agudo Grave/virología
5.
J Virol ; 94(14)2020 07 01.
Artículo en Inglés | MEDLINE | ID: covidwho-197345

RESUMEN

The 2019 coronavirus disease (COVID-19), caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed serious threats to global public health and economic and social stabilities, calling for the prompt development of therapeutics and prophylactics. In this study, we first verified that SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as a cell receptor and that its spike (S) protein mediates high membrane fusion activity. The heptad repeat 1 (HR1) sequence in the S2 fusion protein of SARS-CoV-2 possesses markedly increased α-helicity and thermostability, as well as a higher binding affinity with its corresponding heptad repeat 2 (HR2) site, than the HR1 sequence in S2 of severe acute respiratory syndrome coronavirus (SARS-CoV). Then, we designed an HR2 sequence-based lipopeptide fusion inhibitor, termed IPB02, which showed highly potent activities in inhibiting SARS-CoV-2 S protein-mediated cell-cell fusion and pseudovirus transduction. IPB02 also inhibited the SARS-CoV pseudovirus efficiently. Moreover, the structure-activity relationship (SAR) of IPB02 was characterized with a panel of truncated lipopeptides, revealing the amino acid motifs critical for its binding and antiviral capacities. Therefore, the results presented here provide important information for understanding the entry pathway of SARS-CoV-2 and the design of antivirals that target the membrane fusion step.IMPORTANCE The COVID-19 pandemic, caused by SARS-CoV-2, presents a serious global public health emergency in urgent need of prophylactic and therapeutic interventions. The S protein of coronaviruses mediates viral receptor binding and membrane fusion, thus being considered a critical target for antivirals. Herein, we report that the SARS-CoV-2 S protein has evolved a high level of activity to mediate cell-cell fusion, significantly differing from the S protein of SARS-CoV that emerged previously. The HR1 sequence in the fusion protein of SARS-CoV-2 adopts a much higher helical stability than the HR1 sequence in the fusion protein of SARS-CoV and can interact with the HR2 site to form a six-helical bundle structure more efficiently, underlying the mechanism of the enhanced fusion capacity. Also, importantly, the design of membrane fusion inhibitors with high potencies against both SARS-CoV-2 and SARS-CoV has provided potential arsenals to combat the pandemic and tools to exploit the fusion mechanism.


Asunto(s)
Antivirales/farmacología , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Lipopéptidos/farmacología , Fusión de Membrana/efectos de los fármacos , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/fisiología , COVID-19 , Diseño de Fármacos , Células HEK293 , Humanos , Lipopéptidos/química , Glicoproteínas de Membrana/metabolismo , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas del Envoltorio Viral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA